刷题首页
题库
高中数学
题干
在平面直角坐标系
中,已知椭圆
(
)的焦距为
,且过点
.
(1)求椭圆
的方程;
(2)斜率大于0且过椭圆右焦点
的直线
与椭圆
交于
两点,若
,求直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2019-09-27 08:33:58
答案(点此获取答案解析)
同类题1
已知椭圆
:
的左右焦点分别为
,
,左顶点为
,上顶点为
,
的面积为
.
(1)求椭圆
的方程;
(2)设直线
:
与椭圆
相交于不同的两点
,
,
是线段
的中点.若经过点
的直线
与直线
垂直于点
,求
的取值范围.
同类题2
求以椭圆9
x
2
+5
y
2
=45的焦点为焦点,且经过点
M
(2,
)的椭圆的标准方程
.
同类题3
如图,已知椭圆
C
的方程为
,
为半焦距,椭圆
C
的左、右焦点分别为
,椭圆
C
的离心率为
.
(1)若椭圆过点
,两条准线之间的距离为
,求椭圆
C
的标准方程;
(2)设直线
与椭圆
C
相交于
,
两点,且
四点共圆,若
,试求
的最大值.
同类题4
直线
l
的方程为
y
=
x
+3,
P
为
l
上任意一点,过点
P
且以双曲线12
x
2
-4
y
2
=3的焦点为焦点作椭圆,那么该椭圆的最短长轴长为( )
A.2
B.
C.4
D.
同类题5
给定椭圆
,称圆心在坐标原点
,半径为
的圆是椭圆
的“伴椭圆”,若椭圆
右焦点坐标为
,且过点
.
(1)求椭圆
的“伴椭圆”方程;
(2)在椭圆
的“伴椭圆”上取一点
,过该点作椭圆的两条切线
、
,证明:两线垂直;
(3)在双曲线
上找一点
作椭圆
的两条切线,分别交于切点
、
使得
,求满足条件的所有点
的坐标.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
根据直线与椭圆的位置关系求参数或范围