刷题首页
题库
高中数学
题干
已知椭圆
经过点
,离心率为
,且
、
分别为椭圆的左右焦点.
(1)求椭圆
的方程;
(2)过点
作斜率为
的直线
,交椭圆
于
两点,
为
中点,请说明存在实数
,使得以
为直径的圆经过
点,(不要求求出实数
).
上一题
下一题
0.99难度 解答题 更新时间:2016-05-05 06:52:56
答案(点此获取答案解析)
同类题1
如图,在平面直角坐标系
xOy
中,已知椭圆
的离心率为
,右焦点到直线
的距离为1.
求椭圆的标准方程;
若
P
为椭圆上的一点
点
P
不在
y
轴上
,过点
O
作
OP
的垂线交直线
于点
Q
,求
的值.
同类题2
已知椭圆
的左右焦点分别为
,过
任作一条与坐标轴都不垂直的直线,与
交于
两点,且
的周长为
.当直线
的斜率为
时,
与
轴垂直
(1)求椭圆
的方程
(2)若
是该椭圆上位于第一象限的一点,过
作圆
的切线,切点为
,求
的值;
(3)设
为定点,直线
过点
与
轴交于点
,且与椭圆交于
两点,设
,
,求
的值
同类题3
(本小题满分13分)已知抛物线
的焦点为
,过点F作直线l交抛物线C于A,B两点.椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率
.
(Ⅰ)分别求抛物线C和椭圆E的方程;
(Ⅱ)经过A,B两点分别作抛物线C的切线
,切线
相交于点M.证明
;
(Ⅲ)椭圆E上是否存在一点
,经过点
作抛物线C的两条切线
(
为切点),使得直线
过点F?若存在,求出抛物线C与切线
所围成图形的面积;若不存在,试说明理由.
同类题4
设椭圆
的右焦点为
,右顶点为
,已知
,其中
为坐标原点,
为椭圆的离心率.
(1)求椭圆
的方程;
(2)是否存在斜率为2的直线
,使得当直线
与椭圆
有两个不同交点
时,能在直线
上找到一点
,在椭圆
上找到一点
,满足
?若存在,求出直线
的方程;若不存在,说明理由.
同类题5
已知椭圆
经过点
,离心率为
,左右焦点分别为
,
.
(1)求椭圆
的方程;
(2)
是
上异于
的两点,若直线
与直线
的斜率之积为
,证明:
两点的横坐标之和为常数.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程