刷题首页
题库
高中数学
题干
已知焦点在
轴上的椭圆经过点
,焦距为
.
(1)求椭圆
的标准方程;
(2)点
是椭圆
上的任意点,求点
到直线
:
距离的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-30 03:31:51
答案(点此获取答案解析)
同类题1
已知椭圆中心在原点,焦点在
x
轴上,离心率
,过椭圆的右焦点且垂直于长轴的弦长为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线
与椭圆相交于
两点,且坐标原点
到直线
的距离为
,
的大小是否为定值?若是求出该定值,不是说明理由.
同类题2
已知椭圆
:
,该椭圆经过点
,且离心率为
.
(1)求椭圆
的标准方程;
(2)设
是圆
上任意一点,由
引椭圆
的两条切线
,
,当两条切线的斜率都存在时,证明:两条切线斜率的积为定值.
同类题3
已知点
是椭圆
:
上两点.
(1)求椭圆
的方程;
(2)若直线
的斜率为1,直线
与圆
相切,且与椭圆
交于点
,求线段
的长.
同类题4
(理)已知
分别是椭圆
(其中
)的左、右焦点,椭圆
过点
且与抛物线
有一个公共的焦点.
(1)求椭圆
的方程;
(2)过椭圆
的右焦点且斜率为1的直线
与椭圆交于
、
两点,求线段
的长度.
同类题5
焦点在
x
轴上的椭圆
C
:
经过点
,椭圆
C
的离心率为
.
,
是椭圆的左、右焦点,
P
为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点
M
为
的中点(
O
为坐标原点),过
M
且平行于
OP
的直线
l
交椭圆
C
于
A
,
B
两点,是否存在实数
,使得
;若存在,请求出
的值,若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程