刷题首页
题库
高中数学
题干
椭圆的长轴长是短轴长的2倍,它的一个焦点为(
,0),则椭圆的标准方程是
_____
.
上一题
下一题
0.99难度 填空题 更新时间:2019-11-06 11:04:33
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,且经过点
.
(1)求椭圆
的方程.
(2)过定点
的直线与椭圆
交于两点
.
(线不经过点
),直线
,
的斜率为
,
,求证:
为定值.
同类题2
如图椭圆
的上下顶点为A、B,直线
:
,点P是椭圆上异于点A、B的任意一点,连结AP并延长交直线
于点N,连结BP并延长交直线
于点M,设AP、BP所在直线的斜率分别为
,若椭圆的离心率为
,且过点
,(1)求
的值,并求
最小值;(2)随着点P的变化,以MN为直径的圆是否恒过定点,若过定点,求出该定点坐标;若不过定点,请说明理由。
同类题3
已知椭圆
的一个焦点与抛物线
的焦点重合,且抛物线的准线被椭圆
截得的弦长为1,
是直线
上一点,过点
且与
垂直的直线交椭圆于
两点.
(1)求椭圆
的标准方程;
(2)设直线
的斜率分别为
,求证:
成等差数列.
同类题4
已知椭圆
的一个焦点与
的焦点重合且点
为椭圆上一点
(l)求椭圆方程;
(2)过点
任作两条与椭圆
相交且关于
对称的直线,与椭圆
分别交于
、
两点,求证:直线
的斜率是定值
同类题5
如图,
分别是椭圆
的左、右焦点,且焦距为
,动弦
平行于
轴,且
.
(1)求椭圆
的方程;
(2)若点
是椭圆
上异于点
的任意一点,且直线
、
分别与
轴交于点
,若
、
的斜率分别为
,求证:
是定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程