刷题首页
题库
初中数学
题干
如图,已知,正方形纸片ABCD的边长为4,点P在BC边上,BP=1,点E在AB边上,且∠BPE=60°,沿PE翻折△EBP得到△EB′P. F是CD边上一点,沿PF翻折△FCP得到△FC′P,使点Cˊ落在射线PBˊ上.
(1)求证:EB′// C′F;
(2)连接B′F、C′E,求证:四边形EB′F C′是平行四边形.
上一题
下一题
0.99难度 解答题 更新时间:2013-06-20 10:07:21
答案(点此获取答案解析)
同类题1
如图①,正方形ABCD,点E,F分别在AB,CD上,DG⊥EF于点 H.
(1)求证:DG=EF;
(2)在图①的基础上连接AH,如图②,若 AH=AD,试确定DF与 CG的数量关系,并说明理由;
(3)在(2)的条件下,作∠FEK=45°,点 K在 BC边上,如图③,若AE=KG=2,求EK的长.
同类题2
已知正方形
ABCD
的对角线
AC
,
BD
相交于点
O
.
(1)如图1,
E
,
G
分别是
OB
,
OC
上的点,
CE
与
DG
的延长线相交于点
F
.若
DF
⊥
CE
,求证:
OE
=
OG
;
(2)如图2,
H
是
BC
上的点,过点
H
作
EH
⊥
BC
,交线段
OB
于点
E
,连结
DH
交
CE
于点
F
,交
OC
于点
G
.若
OE
=
OG
,
①求证:∠
ODG
=∠
OCE
;
②当
AB
=1时,求
HC
的长.
同类题3
如图,点 E 是边长为 1 的正方形 ABCD 的对角线 BD 上的一个动点(不与 B、D 两点重合),过点 E 作直线 MN∥DC,交 AD 于 M,交 BC 于 N,连接 AE,作 EF⊥AE 于 E,交直线 CB 于
A.
(1)如图 1,当点 F 在线段 CB 上时,通过观察或测量,猜想△AEF 的形状,并证明你的猜想;
(2)如图 2,当点 F 在线段 CB 的延长线上时,其它条件不变,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由;
(3)在点 E 从点D 向点B 的运动过程中,四边形 AFNM 的面积是否会发生变化?若发生了变化,请说明理由;若没有发生变化,请求出其面积的值.
同类题4
如图,已知四边形
和四边形
为正方形,点
在线段
上,点
在同一直线上,连接
,并延长
交
于点
.
(1)求证:
.
(2)若
,
,求线段
的长.
(3)设
,
,当点
H
是线段
GC
的中点时,则
与
满足什么样的关系式.
同类题5
如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为F,G,若正方形ABCD的周长是40
cm
.
(1)求证:四边形BFEG是矩形;
(2)求四边形EFBG的周长.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明