刷题首页
题库
初中数学
题干
如图,点A的坐标为(8,0),点B的坐标为(6,4),点C的坐标为(0,4),点P从原点O出发,以每秒3的单位长度的速度沿x轴向右运动,点Q从点B出发,以每秒1的单位长度的速度沿线段BC向左运动,P,Q两点同时出发,当点Q运动到点C时,P,Q两点停止运动,设运动时间为t(秒).
(1)当t=
时,四边形OPQC为矩形;
(2)当t=
时,线段PQ平分四边形OABC的面积;
(3)在整个运动过程中,当以ACPQ为顶点的四边形为平行四边形时,求该平行四边形的面积.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-09 08:52:03
答案(点此获取答案解析)
同类题1
如图,在矩形
中,
,
,点
从点
开始沿边
向终点
以
的速度移动,与此同时,点
从点
开始沿边
向终点
以
的速度移动.如果
分别从
同时出发,当点
运动到点
时,两点停止运动,设运动时间为
秒.
(1)填空:
__________,
_________;(用含
的代数式表示)
(2)当
为何值时,
的长度等于
?
(3)当
为何值时,五边形
的面积有最小值?最小值为多少?
同类题2
如图1,在等腰梯形
ABCO
中,
AB
∥
CO
,
E
是
AO
的中点,过点
E
作
EF
∥
OC
交
BC
于
F
,
AO
=4,
OC
=6,∠
AOC
=60°.现把梯形
ABCO
放置在平面直角坐标系中,使点
O
与原点重合,
OC
在
x
轴正半轴上,点
A
,
B
在第一象限内.
(1)求点
E
的坐标及线段
AB
的长;
(2)点
P
为线段
EF
上的一个动点,过点
P
作
PM
⊥
EF
交
OC
于点
M
,过
M
作
MN
∥
AO
交折线
ABC
于点
N
,连结
PN
,设
PE
=
x
.△
PMN
的面积为
S
.
①求
S
关于
x
的函数关系式;
②△
PMN
的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;
(3)另有一直角梯形
EDGH
(
H
在
EF
上,
DG
落在
OC
上,∠
EDG
=90°,且
DG
=3,
HG
∥
BC
.现在开始操作:固定等腰梯形
ABCO
,将直角梯形
EDGH
以每秒1个单位的速度沿
OC
方向向右移动,直到点
D
与点
C
重合时停止(如图2).设运动时间为
t
秒,运动后的直角梯形为
E
′
D
′
G
′
H
′(如图3);试探究:在运动过程中,等腰梯
ABCO
与直角梯形
E
′
D
′
G
′
H
′重合部分的面积
y
与时间
t
的函数关系式.
同类题3
如图,正方形ABCD的边长为4厘米,动点P从点A出发沿AB边由A向B以1厘米/秒的速度匀速移动(点P不与点A、B重合),动点Q从点B出发沿拆线BC-CD以2厘米/秒的速度匀速移动。点P、Q同时出发,当点P停止运动,点Q也随之停止。联结AQ交BD于点E。设点P运动时间为t秒。
(1)用t表示线段PB的长;
(2)当点Q在线段BC上运动时,t为何值时,∠BEP和∠BEQ相等;
(3)当t为何值时,线段P、Q之间的距离为2
cm.
同类题4
如图,在边长为
的正方形
中,点
,
,
,
分别按
,
,
,
的方向同时出
发,以
的速度匀速运动.在运动过程中,设四边形
的面积为
,运动时间为
.
试证明四边形
是正方形;
写出
关于
的函数关系式,并求运动几秒钟时,面积最小,最小值是多少?
是否存在某一时刻
,使四边形
的面积与正方形
的面积比是
?若存在,求出
的值;若不存在,请说明理由.
相关知识点
图形的性质
四边形
特殊的平行四边形
四边形综合
(特殊)平行四边形的动点问题