刷题首页
题库
初中数学
题干
如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).
(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是
;
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=
AD,请给出证明;
(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.
上一题
下一题
0.99难度 解答题 更新时间:2015-08-28 03:01:36
答案(点此获取答案解析)
同类题1
如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm
2
),点P运动的时间为t(s)(0<t<3).
(1)当点N落在边BC上时,求t的值.
(2)当点N到点A、B的距离相等时,求t的值.
(3)当点Q沿D→B运动时,求S与t之间的函数表达式.
(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF与四边形PQMN的面积比为2:3时t的值.
同类题2
如图,已知△ABC和△DEF是两个边长都为8cm的等边三角形,且 B、D、C、F都在同一条直线上,连接AD、CE
(1)求证:四边形ADEC是平行四边形
(2)若BD=3cm, △ABC沿着BF的方向以每秒1cm的速度运动,设△ABC运动时间为t秒
①当t等于多少秒时,四边形ADEC为菱形;
②点B运动过程中,四边形ADEC有可能是矩形吗?若可能,请画出图形,并求出t的值;若不可能,请说明理由.
同类题3
如图,在四边形
ABCD
中,
AD
∥
BC
,∠
B
=90°,
AD
=18 cm,
BC
=21 cm,点
P
从点
A
开始沿
AD
边向
D
以1 cm/s的速度运动,点
Q
从点
C
开始沿
CB
边向
B
以2 cm/s的速度运动,如果
P
、
Q
分别从
A
、
C
同时出发,设运动时间为
t
秒.
求:(1)当
t
为何值时,四边形
ABQP
为矩形?
(2)当
t
为何值时,四边形
PQCD
为平行四边形?
同类题4
如图,在梯形ABCD中,AD//BC,E是BC的中点,AD=5,BC=12,CD=
,∠C=45°,点P是BC边上一动点,设PB的长为x.
【小题1】当x的值为____________时,以点P、A、D、E为顶点的四边形为直角梯形
【小题2】当x的值为____________时,以点P、A、D、E为顶点的四边形为平行四边形;
【小题3】点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.
同类题5
(2016•包河区一模)如图1,在▱ABCD中,E、F两点分别从A、D两点出发,以相同的速度在AD、DC边上匀速运动(E、F两点不与▱ABCD的顶点重合),连结BE、BF、EF.
(1)如图2,当▱ABCD是矩形,AB=6,AD=8,∠BEF=90°时,求AE的长.
(2)如图2,当▱ABCD是菱形,且∠DAB=60°时,试判断△BEF的形状,并说明理由;
(3)如图3,在第(2)题的条件下,设菱形ABCD的边长为a,AE的长为x,试求△BEF面积y与x的函数关系式,并求出y的最小值.
相关知识点
图形的性质
四边形
特殊的平行四边形
四边形综合
(特殊)平行四边形的动点问题