刷题首页
题库
初中数学
题干
如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-30 12:54:26
答案(点此获取答案解析)
同类题1
如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.
求证:(1)BE=DF;(2)AF∥CE.
同类题2
已知:如图,在梯形
中,
∥
,点
、
在边
上,
∥
,
∥
,且四边形
是平行四边形.
(1)试判断线段
与
的长度之间有怎样的数量关系?并证明你的结论;
(2)现有三个论断:①
;②∠
+∠
=90°;③∠
=2∠
.请从上述三个论断中选择一个论断作为条件,证明四边形
是菱形.
同类题3
如图所示,过四边形ABCD的各顶点,作对角线BD、AC的平行线,围城四边形EFGH,若四边形EFGH是菱形,则原四边形一定是( )
A.菱形
B.平行四边形
C.矩形
D.对角线相等的四边形
同类题4
问题与探索
问题情境:课堂上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动.如图(1),将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△AC
A.
操作发现:
(1)将图(1)中的△ACD以点A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图(2)所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是
.
(2)创新小组将图(1)中的△ACD以点A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图(3)所示的△AC′D,连接DB、C′C,得到四边形BCC′D,发现它是矩形,请证明这个结论.
同类题5
如图,四边形
ABCD
为平行四边形,
E
,
F
是直线
BD
上两点,且
BE
=
DF
,连接
AF
,
CE
求证:
AF
=
CE
.
相关知识点
图形的性质
四边形
平行四边形
平行四边形的判定与性质综合
利用平行四边形性质和判定证明