刷题宝
  • 刷题首页
题库 高中数学

题干

椭圆C:(a>b>0)的左、右焦点分别为,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为,直线MB的斜率为,证明 为定值,并求出该定值.
上一题 下一题 0.99难度 解答题 更新时间:2019-12-03 04:45:46

答案(点此获取答案解析)

同类题1

已知椭圆C:的离心率为,短轴长为4.
(1)求椭圆C的标准方程;
(2)已知不经过点P(0,2)的直线l:交椭圆C于A,B两点,M在AB上满足且,问直线是否过定点,若过求定点坐标;若不过,请说明理由.

同类题2

已知椭圆1(a>b>0)的左、右焦点分别为F1,F2,焦距为2.过点F1作x轴的垂线与椭圆相交,其中一个交点为P点(如图所示),若△PF1F2的面积为,则椭圆的方程为(    )
A.B.
C.D.

同类题3

(本小题满分14分)设椭圆 的右焦点为,直线与轴交于点,若(其中为坐标原点).
(1)求椭圆的方程;
(2)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 椭圆
  • 椭圆的标准方程
  • 根据a、b、c求椭圆标准方程
  • 根据直线与椭圆的位置关系求参数或范围
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)