刷题首页
题库
高中数学
题干
已知椭圆
的短轴长等于
,离心率为
.
(1)求椭圆
C
的方程;
(2)设
О
为坐标原点,过右焦点
F
的直线与椭圆
C
交于
A
、
B
两点(
A
、
B
不在
x
轴上),若
,求四边形
AOBE
面积
S
的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-19 10:44:09
答案(点此获取答案解析)
同类题1
已知椭圆M:
(a>b>0)的一个焦点为F(﹣1,0),离心率
,左右顶点分别为A、B,经过点F的直线l与椭圆M交于C、D两点(与A、B不重合).
(1)求椭圆M的方程;
(2)记△ABC与△ABD的面积分别为S
1
和S
2
,求|S
1
﹣S
2
|的最大值,并求此时l的方程.
同类题2
设抛物线C
1
:y
2
=4x的准线与x轴交于点F
1
,焦点为F
2
;以F
1
,F
2
为焦点,离心率为
的椭圆记作C
2
(1)求椭圆的标准方程;
(2)直线L经过椭圆C
2
的右焦点F
2
,与抛物线C
1
交于A
1
,A
2
两点,与椭圆C
2
交于B
1
,B
2
两点.当以B
1
B
2
为直径的圆经过F
1
时,求|A
1
A
2
|长.
(3)若M是椭圆上的动点,以M为圆心,MF
2
为半径作圆
,是否存在定圆
,使得
与
恒相切?若存在,求出
的方程,若不存在,请说明理由.
同类题3
已知椭圆
的离心率为
,过右焦点
且斜率为
的直线与
相交于
两点.若
,则
A.1
B.
C.
D.2
同类题4
已知椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)过椭圆
左焦点的直线
与椭圆
交于
两点,直线
过坐标原点且直线
与
的斜率互为相反数,直线
与椭圆交于
两点且均不与点
重合,设直线
的斜率为
,直线
的斜率为
.证明:
为定值.
同类题5
已知椭圆
的离心率为
,点
在椭圆
上,焦点为
,圆
O
的直径为
.
(1)求椭圆
C
及圆
O
的标准方程;
(2)设直线
l
与圆
O
相切于第一象限内的点
P
,且直线
l
与椭圆
C
交于
两点.记
的面积为
,证明:
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程