刷题首页
题库
高中数学
题干
中心在原点,焦距为2,离心率为
的椭圆标准方程为( )
A.
或
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-12-21 11:09:54
答案(点此获取答案解析)
同类题1
设椭圆
:
的左顶点为
,右焦点为
,已知
.
(1)求椭圆
的方程;
(2)抛物线
与直线
交于
,
两点,直线
与椭圆
交于点
(异于点
),若直线
与
垂直,求
的值.
同类题2
已知椭圆
的离心率为
,点
椭圆的右顶点.
(1)求椭圆的方程;
(2)过点
的直线
与椭圆交于
两点,直线
与直线
的斜率和为
,求直线
的方程.
同类题3
已知椭圆
的短半轴长为
,离心率为
.
(1)求椭圆的方程;
(2)设
是椭圆上关于坐标原点对称的两点,且点
在第一象限,
轴,垂足为
,连接
并延长交椭圆于点
,证明:
是直角三角形.
同类题4
已知焦点在
轴上的抛物线
过点
,椭圆
的两个焦点分别为
,其中
与
的焦点重合,过
与长轴垂直的直线交椭圆
于
两点且
,曲线
是以原点为圆心以
为半径的圆.
(1)求
与
及
的方程;
(2)若动直线
与圆
相切,且与
交与
两点,三角形
的面积为
,求
的取值范围.
同类题5
已知椭圆
过点
,且离心率为
.
(1)求椭圆
的方程;
(2)设椭圆
在左、右顶点分别为
、
,左焦点为
,过
的直线
与
交于
、
两点(
和
均不在坐标轴上),直线
、
分别与
轴交于点
、
,直线
、
分别与
轴交于点
、
,求证:
为定值,并求出该定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程