刷题首页
题库
高中数学
题干
已知椭圆
的一个焦点与抛物线
的焦点重合,且此抛物线的准线被椭圆
C
截得的弦长为1.
(I)求椭圆
C
的标准方程;
(II)直线
l
交椭圆
C
于
A
,
B
两点,线段
AB
的中点为
,直线
m
是线段
AB
的垂直平分线,试问直线
过定点坐标.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-30 10:47:29
答案(点此获取答案解析)
同类题1
已知椭圆
的焦点和上顶点分别为
,定义:
为椭圆
的“特征三角形”,如果两个椭圆的特征三角形是相似三角形,那么称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比,已知点
是椭圆
的一个焦点,且
上任意一点到它的两焦点的距离之和为4
(1)若椭圆
与椭圆
相似,且
与
的相似比为2:1,求椭圆
的方程.
(2)已知点
是椭圆
上的任意一点,若点
是直线
与抛物线
异于原点的交点,证明:点
一定在双曲线
上.
(3)已知直线
,与椭圆
相似且短半轴长为
的椭圆为
,是否存在正方形
,(设其面积为
),使得
在直线
上,
在曲线
上?若存在,求出函数
的解析式及定义域;若不存在,请说明理由.
同类题2
已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被圆C所截得的弦长为
.
(1)求过圆心且与直线l垂直的直线m方程;
(2)点P在直线m上,求以A(-1,0),B(1,0)为焦点且过P点的长轴长最小的椭圆的方程.
同类题3
已知椭圆
,
、
分别是椭圆短轴的上下两个端点;
是椭圆的左焦点,
P
是椭圆上异于点
、
的点,
是边长为4的等边三角形.
(1)写出椭圆的标准方程;
(2)设点
R
满足:
,
.求证:
与
的面积之比为定值.
同类题4
已知椭圆
,
,
为椭圆的两个焦点,
为椭圆上任意一点,且
,
构成等差数列,过椭圆焦点垂直于长轴的弦长为3.
(1)求椭圆
的方程;
(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆
恒有两个交点
,且
,求出该圆的方程.
同类题5
已知椭圆
的长轴长为4,离心率为
.
(I)求C的方程;
(II)设直线
交C于A,B两点,点A在第一象限,
轴,垂足为
M
, 连结
BM
并延长交
C
于点
N
.求证:点
A
在以
BN
为直径的圆上.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据抛物线方程求焦点或准线