刷题首页
题库
高中数学
题干
已知椭圆
的一个焦点与抛物线
的焦点重合,且此抛物线的准线被椭圆
C
截得的弦长为1.
(I)求椭圆
C
的标准方程;
(II)直线
l
交椭圆
C
于
A
,
B
两点,线段
AB
的中点为
,直线
m
是线段
AB
的垂直平分线,试问直线
过定点坐标.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-30 10:47:29
答案(点此获取答案解析)
同类题1
已知椭圆
的左右焦点分别为
,
,离心率为
.若点
为椭圆上一动点,
的内切圆面积的最大值为
.
(1)求椭圆的标准方程;
(2)过点
作斜率为的动直线交椭圆于
两点,
的中点为
,在
轴上是否存在定点
,使得对于任意
值均有
,若存在,求出点
的坐标,若不存在,说明理由.
同类题2
已知椭圆
的左焦点为
是椭圆上关于原点
对称的两个动点,当点
的坐标为
时,
的周长恰为
.
(1)求椭圆
的方程;
(2)已知点
,斜率为2的直线
交椭圆
于
两点,求
面积的最大值.
同类题3
已知椭圆
的左、右焦点分别为
、
,由椭圆短轴的一个端点与两焦点构成一个等边三角形,它的面积为
.
(1)求椭圆
的方程;
(2)已知动点
在椭圆
上,点
,直线
交
轴于点
,点
为点
关于
轴对称点,直线
交
轴于点
,若在
轴上存点
,使得
,求点
的坐标.
同类题4
已知椭圆
:
的离心率
,过椭圆的左焦点
且倾斜角为
的直线与圆
相交所得弦长为
.
(1)求椭圆
的方程;
(2)是否存在过点
的直线
与椭圆
交于
两点,且
,若存在,求直线
的方程;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据抛物线方程求焦点或准线