刷题首页
题库
高中数学
题干
已知点
A
(−2,0),
B
(2,0),动点
M
(
x
,
y
)满足直线
AM
与
BM
的斜率之积为−
.记
M
的轨迹为曲线
C
.
(1)求
C
的方程,并说明
C
是什么曲线;
(2)过坐标原点的直线交
C
于
P
,
Q
两点,点
P
在第一象限,
PE
⊥
x
轴,垂足为
E
,连结
QE
并延长交
C
于点
G
.
(i)证明:
是直角三角形;
(ii)求
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-03 07:48:10
答案(点此获取答案解析)
同类题1
如图,已知椭圆
的离心率为
,
为椭圆
上的动点,
到点
的距离的最大值为
,直线
交椭圆于
,
两点.
(1)求椭圆
的方程;
(2)若以
为圆心的圆的半径为
,且圆
与
、
相切.
(i)是否存在常数
,使
恒成立?若存在,求出常数
;若不存在,说明理由;
(ii)求
的面积.
同类题2
已知
,
分别是椭圆
:
的左,右焦点,点
在椭圆
上,且抛物线
的焦点是椭圆
的一个焦点.
(1)求
,
的值:
(2)过点
作不与
轴重合的直线
,设
与圆
相交于
A
,
B
两点,且与椭圆
相交于
C
,
D
两点,当
时,求△
的面积.
同类题3
给出下列说法:①方程
表示的图形是一个点;②命题“若
,则
或
”为真命题;③已知双曲线
的左右焦点分别为
,
,过右焦点
被双曲线截得的弦长为4的直线有3条;④已知椭圆
上有两点
,
,若点
是椭圆
上任意一点,且
,直线
,
的斜率分别为
,
,则
为定值
.
其中说法正确的序号是________.
同类题4
已知椭圆
的离心率为
,
,
分别是其左、右焦点,且过点
.
(1)求椭圆
的标准方程;
(2)求
的外接圆的方程.
同类题5
我们称点
到图形
上任意一点距离的最小值为点
到图形
的距离,记作
(1)求点
到抛物线
的距离
;
(2)设
是长为2的线段,求点集
所表示图形的面积;
(3)试探究:平面内,动点
到定圆
的距离与到定点
的距离相等的点的轨迹.
相关知识点
平面解析几何
圆锥曲线