刷题首页
题库
初中数学
题干
在△ABC中,AB=AC,点E是AC的中点,线段AE以A为中心顺时针旋转,点E落在线段BE上的D处,线段CE以C为中心顺时针旋转,点E落在BE的延长线上的点F处,连接AF,C
A.
(1)求证:四边形ADCF是平行四边形;
(2)当BD=CD时,探究线段AB,BC,BF三者之间的等量关系,并证明;
(3)在(2)的条件下,若DE=1,试求BC的值.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-27 08:40:22
答案(点此获取答案解析)
同类题1
在△
ABC
中,∠
C
=90°,若
AB=
5,则
AB
2
+
AC
2
+
BC
2
=( )
A.10
B.15
C.30
D.50
同类题2
一、阅读理解:
在△ABC中,BC=a,CA=b,AB=c;
(1)若∠C为直角,则
;
(2)若∠C为为锐角,则
与
的关系为:
证明:如图过A作AD⊥BC于D,则BD=BC-CD=a-CD
在△ABD中:AD
2
=AB
2
-BD
2
在△ACD中:AD
2
=AC
2
-CD
2
AB
2
-BD
2
= AC
2
-CD
2
c
2
-(
-CD)
2
= b
2
-CD
2
∴
∵
>0,CD>0
∴
,所以:
(3)若∠C为钝角,试推导
的关系.
二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c;若△ABC是钝角三角形,求第三边c的取值范围.
同类题3
如图,在四边形
ABCD
中,
AB
∥
CD
,∠
ECF
=∠
BCD
=90°,
CE
=
CF
=5,
BC
=7,
BD
平分∠
ABC
,
E
是△
BCD
内一点,
F
是四边形
ABCD
外一点.(
E
可以在△
BCD
的边上)
(1)求证:
DC
=
BC
;
(2)当∠
BEC
=135°,设
BE
=
a
,
DE
=
b
,求
a
与
b
满足的关系式;
(3)当
E
落在线段
BD
上时,求
DE
的长.
同类题4
问题背景:如图1,在正方形
ABCD
的内部,作∠
DAE
=∠
ABF
=∠
BCG
=∠
CDH
,根据三角形全等的条件,易得△
DAE
≌△
ABF
≌△
BCG
≌△
CDH
,从而得四边形
EFGH
是正方形.
类比探究:如图2,在正△
ABC
的内部,作∠1=∠2=∠3,
AD
,
BE
,
CF
两两相交于
D
,
E
,
F
三点(
D
,
E
,
F
三点不重合).
(1)△
ABD
,△
BCE
,△
CAF
是否全等?如果是,请选择其中一对进行证明;
(2)△
DEF
是否为正三角形?请说明理由;
(3)如图3,进一步探究发现,△
ABD
的三边存在一定的等量关系,设
BD
=
a
,
AD
=
b
,
AB
=
c
,请探索
a
,
b
,
c
满足的等量关系.
同类题5
已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF连接EF
(1)如图1,求证:∠BED=∠AFD;
(2)求证:BE
2
+CF
2
=EF
2
;
(3)如图2,当∠ABC=45°,若BE=12,CF=5,求△DEF的面积.
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
利用勾股定理证明线段平方关系