刷题首页
题库
高中数学
题干
在平面直角坐标系
中,已知椭圆
:
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)设点
,点
在
轴上,过点
的直线交椭圆
交于
,
两点.
①若直线
的斜率为
,且
,求点
的坐标;
②设直线
,
,
的斜率分别为
,
,
,是否存在定点
,使得
恒成立?若存在,求出
点坐标;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 07:44:54
答案(点此获取答案解析)
同类题1
在平面直角坐标系xOy中,椭圆C:
(a>b>0)的上顶点到焦点的距离为2,离心率为
.
(1)求a,b的值.
(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.
(ⅰ)若k=1,求△OAB面积的最大值;
(ⅱ)若PA
2
+PB
2
的值与点P的位置无关,求k的值.
同类题2
设椭圆
的左右焦点分别为
,离心率
,右准线为
,
是
上的两个动点,
.
(Ⅰ)若
,求
的值;
(Ⅱ)证明:当
取最小值时,
与
共线.
同类题3
设椭圆
左右焦点为
上顶点为
,离心率为
且
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
是
轴正半轴上的一点,过点
任作直线
与
相交于
两点,如果
,是定值,试确定点
的位置,并求
的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆方程求a、b、c
求椭圆中的弦长