刷题宝
  • 刷题首页
题库 高中数学

题干

顺次连接椭圆的四个顶点恰好构成了一个边长为且面积为的菱形.

(1)求椭圆的标准方程;
(2)设直线与椭圆相切于点,过点作,垂足为,求面积的最大值.
上一题 下一题 0.99难度 解答题 更新时间:2020-01-17 09:40:12

答案(点此获取答案解析)

同类题1

已知椭圆的左、右焦点分别为,是椭圆上一动点(与左、右顶点不重合)已知的内切圆半径的最大值为,椭圆的离心率为.
(1)求椭圆C的方程;
(2)过的直线交椭圆于两点,过作轴的垂线交椭圆与另一点(不与重合).设的外心为,求证为定值.

同类题2

已知椭圆的方程为,离心率,且矩轴长为4.
(1)求椭圆的方程;
(2)已知,,若直线与圆相切,且交椭圆于、两点,记的面积为,记的面积为,求的最大值.

同类题3

设椭圆的右顶点为A,下顶点为B,过A、O、B(O为坐标原点)三点的圆的圆心坐标为.
(1)求椭圆的方程;
(2)已知点M在x轴正半轴上,过点B作BM的垂线与椭圆交于另一点N,若∠BMN=60°,求点M的坐标.

同类题4

已知椭圆的焦点在圆上,且椭圆上一点与两焦点围成的三角形周长为.
(1)求椭圆的方程;
(2)过圆上一点作圆的切线交椭圆于两点,证明:点在以为直径的圆内.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 椭圆
  • 椭圆的标准方程
  • 根据a、b、c求椭圆标准方程
  • 求椭圆的切线方程
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)