刷题首页
题库
高中数学
题干
设
,
分别为椭圆
:
的左、右焦点,已知椭圆
上的点
到焦点
,
的距离之和为4.
(1)求椭圆
的方程;
(2)过点
作直线交椭圆
于
,
两点,线段
的中点为
,连结
并延长交椭圆于点
(
为坐标原点),若
,
,
等比数列,求线段
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-12 05:21:34
答案(点此获取答案解析)
同类题1
如图,已知在坐标平面内,
M
、
N
是
x
轴上关于原点
O
对称的两点,
P
是上半平面内一点,△
PMN
的面积为
点
坐标为
(
为常数),
(Ⅰ)求以
M
、
N
为焦点且过点
P
的椭圆方程;
(Ⅱ)过点
B
(﹣1,0)的直线
l
交椭圆于
C
、
D
两点,交直线
x
=﹣4于点
E
,点
B
、
E
分
的比分别为
、λ
2
,求
+λ
2
的值
同类题2
已知
分别是椭圆
的左、右焦点,
是椭圆
上一点,且
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
两点,且
,试求点
到直线
的距离.
同类题3
某高速公路隧道设计为单向三车道,每条车道宽4米,要求通行车辆限高5米,隧道全长1.5千米,隧道的断面轮廓线近似地看成半个椭圆形状(如图所示).
(1)若最大拱高
为6米,则隧道设计的拱宽
至少是多少米?(结果取整数)
(2)如何设计拱高
和拱宽
,才能使半个椭圆形隧道的土方工程量最小?(结果取整数)
参考数据:
,椭圆的面积公式为
,其中
,
分别为椭圆的长半轴和短半轴长.
同类题4
已知椭圆
的中心在坐标原点,且经过点
,它的一个焦点与抛物线
的焦点重合.
(1)求椭圆
的方程;
(2)斜率为
的直线过点
,且与抛物线
交于
两点,设点
,
的面积为
,求
的值;
(3)若直线
过点
,且与椭圆
交于
两点,点
关于
轴的对称点为
,直线
的纵截距为
,证明:
为定值.
同类题5
椭圆C
1
:
的左、右焦点分别为F
1
、F
2
,F
2
也是抛物线
C
2
:
的焦点,点M为C
1
与C
2
在第一象限的交点,且
(I)求C
1
的方程;
(II)直线
l
∥OM(
为坐标原点),且与C
1
交于A、B两点,若
·
=0,求直线
l
的方程
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
求直线与椭圆的交点坐标