刷题首页
题库
高中数学
题干
圆锥曲线
的离心率
,则
m
的值为( )
A.
B.4
C.
或4
D.-2或4
上一题
下一题
0.99难度 单选题 更新时间:2020-02-13 06:00:55
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,
,
分别是椭圆的左右焦点,过点
的直线交椭圆于
,
两点,且
的周长为12.
(Ⅰ)求椭圆
的方程
(Ⅱ)过点
作斜率为
的直线
与椭圆
交于两点
,
,试判断在
轴上是否存在点
,使得
是以
为底边的等腰三角形若存在,求点
横坐标的取值范围,若不存在,请说明理由.
同类题2
设椭圆
的左、右焦点分别为
,过点
作垂直于
的直线交椭圆于
两点,若椭圆离心率为
,
的面积为
.
(1)求椭圆
的标准方程;
(2)动直线
与椭圆
交于
两点,且
,是否存在圆
使得
恰好是该圆的切线,若存在,求出
;若不存在,说明理由.
同类题3
已知椭圆C的左、右焦点坐标分别是 (
,0), (
,0),离心率是
,直线y=t椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标.
同类题4
已知椭圆
过点
,且离心率为
.
(1)求椭圆
的标准方程;
(2)若点
与点
均在椭圆
上,且
关于原点对称,问:椭圆上是否存在点
(点
在一象限),使得
为等边三角形?若存在,求出点
的坐标;若不存在,请说明理由.
同类题5
已知椭圆
:
的离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)直线
与椭圆
相交于
,
两点,若
,求
(
为坐标原点)面积的最大值及此时直线
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
根据离心率求双曲线的标准方程