刷题首页
题库
高中数学
题干
已知点
,
是坐标轴上两点,动点
满足直线
与
的斜率之积为
(其中
为常数,且
).记
的轨迹为曲线
.
(1)求
的方程,并说明
是什么曲线;
(2)过点
斜率为
的直线与曲线
交于点
,点
在曲线
上,且
,若
,求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-13 04:10:12
答案(点此获取答案解析)
同类题1
已知△ABC的三边AB,BC,AC的长依次成等差数列,且|AB|>|AC|,B(-1,0),C(1,0),则顶点A的轨迹方程为( )
A.
B.
C.
D.
同类题2
已知圆
,圆
内一点
,动圆
经过点
且与圆
内切.
(1)求圆心
的轨迹
的方程.
(2)过点
且不与坐标轴垂直的直线交曲线
于
两点,线段
的垂直平分线与
轴交于点
,求点
横坐标的取值范围.
同类题3
在平面直角坐标系
中,
,
,且
满足
.记点
的轨迹为曲线
.
(1)求
的方程,并说明是什么曲线;
(2)若
,
是曲线
上的动点,且直线
过点
,问在
轴上是否存在定点
,使得
?若存在,请求出定点
的坐标;若不存在,请说明理由.
同类题4
已知动圆
在圆
:
外部且与圆
相切,同时还在圆
:
内部与圆
相切.
(1)求动圆圆心
的轨迹方程;
(2)记(1)中求出的轨迹为
,
与
轴的两个交点分别为
、
,
是
上异于
、
的动点,又直线
与
轴交于点
,直线
、
分别交直线
于
、
两点,求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
轨迹问题——椭圆