刷题首页
题库
高中数学
题干
已知椭圆
的左右焦点分别为
,离心率为
,
是椭圆
上的一个动点,且
面积的最大值为
.
(1)求椭圆
的方程;
(2)设直线
斜率为
,且
与椭圆
的另一个交点为
,是否存在点
,使得
若存在,求
的取值范围;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-20 05:49:01
答案(点此获取答案解析)
同类题1
已知椭圆
:
和椭圆
:
,离心率相同,且点
在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
为椭圆
上一点,过点
作直线交椭圆
于
,
两点,且
恰为弦
的中点,则当点
变化时,试问
的面积是否为常数,若是,请求出此常数,若不是,请说明理由。
同类题2
已知
内接于抛物线
,其中
O
为原点,若此内接三角形的垂心恰为抛物线的焦点,则
的外接圆方程为_____.
同类题3
已知
是
与
的等比中项,则圆锥曲线
的离心率是__________.
同类题4
已知抛物线
的焦点为
,
为该抛物线上的一个动点.
(1)当
时,求点
的坐标;
(2)过
且斜率为1的直线与抛物线交于两点
,若
在弧
上,求
面积的最大值.
同类题5
已知椭圆C:
的离心率为
,
分别为椭圆
的左、右顶点,点
满足
.
(1)求椭圆
的方程;
(2)设直线
经过点
且与
交于不同的两点
,试问:在x轴上是否存在点
,使得直线
与直线
的斜率的和为定值?若存在,求出点
的坐标及定值,若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线