刷题首页
题库
高中数学
题干
已知椭圆
的左焦点为
,直线
与
x
轴交于点
,过点
且倾斜角为30°的直线
l
交椭圆于
A
,
B
两点
(1)求直线
l
和椭圆
E
的方程;
(2)求证:点
在以线段
AB
为直径的圆上.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-21 12:11:22
答案(点此获取答案解析)
同类题1
设椭圆
的离心率为
,圆
与
轴正半轴交于点
, 圆
在点
处的切线被椭圆
截得的弦长为
.
(1)求椭圆
的方程;
(2)设圆
上任意一点
处的切线交椭圆
于点
、
,求证:
为定值.
同类题2
在平面直角坐标系
中,已知椭圆
过点
,且离心率
.
(1)求椭圆
的方程;
(2)直线
的斜率为
,直线
与椭圆
交于
、
两点,求
的面积的最大值.
同类题3
已知在平面直角坐标系xOy中,椭圆C:
(a>b>0)离心率为
,其短轴长为2.
(1)求椭圆C的标准方程;
(2)如图,A为椭圆C的左顶点,P,Q为椭圆C上两动点,直线PO交AQ于E,直线QO交AP于D,直线OP与直线OQ的斜率分别为k
1
,k
2
,且k
1
k
2
=
,
(λ,μ为非零实数),求λ
2
+μ
2
的值.
同类题4
已知椭圆
(
)的焦距为2,离心率为
,右顶点为
.
(I)求该椭圆的方程;
(II)过点
作直线
交椭圆于两个不同点
,求证:直线
,
的斜率之和为定值.
同类题5
如图,过抛物线M:
y
=
x
2
上一点
A
(点
A
不与原点
O
重合)作抛物线
M
的切线
AB
交
y
轴于点
B
,点
C
是抛物线M上异于点
A
的点,设
G
为△
ABC
的重心(三条中线的交点),直线
CG
交
y
轴于点
A.
(Ⅰ)设
A
(
x
0
,
x
0
2
)(
x
0
≠0),求直线
AB
的方程;
(Ⅱ)求
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程