刷题首页
题库
高中数学
题干
如图1,在长方形
中,
为
的中点,
为线段
上一动点.现将
沿
折起,形成四棱锥
.
图1 图2 图3
(Ⅰ)若
与
重合,且
(如图2).
(ⅰ)证明:
平面
;
(ⅱ)求二面角
的余弦值.
(Ⅱ)若
不与
重合,且平面
平面
(如图3),设
,求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2018-09-07 12:08:45
答案(点此获取答案解析)
同类题1
如图,平面ABCD⊥平面ABE,四边形ABCD是边长为2的正方形,AE=1,F为CE上的点,且BF⊥平面AC
A.
(1)求证:AE⊥平面BCE;
(2)线段AD上是否存在一点M,使平面ABE与平面MCE所成二面角的余弦值为
?若存在,试确定点M的位置;若不存在,请说明理由.
同类题2
如图,在正方体
中,直线
与平面
和平面
分别交于点G,H.
求证:点G,H是线段
的三等分点;
在棱
上是否存在点M,使得二面角
的大小为
?若存在,求
的值;若不存在,请说明理由.
同类题3
如图,在四棱锥
中,底面
为矩形,侧面
底面
,
为棱
的中点,
为棱
上任意一点,且不与
点、
点重合.
.
(1)求证:平面
平面
;
(2)是否存在点
使得平面
与平面
所成的角的余弦值为
?若存在,求出点
的位置;若不存在,请说明理由.
同类题4
如图,在四棱锥
中,
,底面四边形
为直角梯形,
为线段
上一点.
(1)若
,则在线段
上是否存在点
,使得
平面
?若存在,请确定
点的位置;若不存在,请说明理由.
(2)己知
,若异面直线
与
成
角,二面角
的余弦值为
,求
的长.
同类题5
如图四边形
中,
,
,现将
沿
折起,当二面角
的大小为
时,直线
与
所成角的余弦值是( )
A.
B.
C.
D.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用