刷题首页
题库
高中数学
题干
如图,四棱锥中
,四边形
为菱形,
,
,平面
平面
.
(1)求证:
;
(2)求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-08 05:26:52
答案(点此获取答案解析)
同类题1
如图,
M
、
N
分别是边长为1的正方形
ABCD
的边
BC
、
CD
的中点,将正方形沿对角线
AC
折起,使点
D
不在平面
ABC
内,则在翻折过程中,有以下结论:
①异面直线
AC
与
BD
所成的角为定值.
②存在某个位置,使得直线
AD
与直线
BC
垂直.
③存在某个位置,使得直线
MN
与平面
ABC
所成的角为45°.
④三棱锥
M
-
ACN
体积的最大值为
.
以上所有正确结论的序号是__________.
同类题2
如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD=4,AB=3,点E为线段PD的中点.
(Ⅰ)求证:PB∥平面AEC;
(Ⅱ)求证:AE⊥PC;
(Ⅲ)求三棱锥P-ACE的体积.
同类题3
(本小题满分14分)如图,矩形
中,
,
.
,
分别在线段
和
上,
∥
,将矩形
沿
折起.记折起后的矩形为
,且平面
平面
.
(Ⅰ)求证:
∥平面
;
(Ⅱ)若
,求证:
;
(Ⅲ)求四面体
体积的最大值.
同类题4
如图,在四棱锥
中,底面
是正方形,
,
.
(1)证明:
平面
;
(2)若
是
的中点,
是棱
上一点,且
平面
,求二面角
的余弦值.
同类题5
如图,在梯形
中,
,
,
,现将
沿
翻折成直二面角
.
(Ⅰ)证明:
;
(Ⅱ)若异面直线
与
所成角的余弦值为
,求二面角
余弦值的大小.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的性质
线面垂直证明线线垂直