刷题首页
题库
高中数学
题干
在正三棱柱
ABC
-
A
1
B
1
C
1
中,
BC
=
BB
1
,
E
,
F
,
M
分别为
A
1
C
1
,
AB
1
,
BC
的中点.
(1)求证:
EF
∥平面
BB
1
C
1
C
;
(2)求证:
EF
⊥平面
AB
1
M
.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-09 04:20:18
答案(点此获取答案解析)
同类题1
如图,在四棱锥
中,四边形
为菱形,
,
底面
,
为直线
上一动点.
(Ⅰ)求证:
;
(Ⅱ)若
,
分别为线段
,
的中点,求证:
平面
;
(Ⅲ)直线
上是否存在点
,使得平面
平面
?若存在,求出
的值;若不存在,请说明理由.
同类题2
正方体
的棱长为1,
分别为
的中点.有下述四个结论:①直线
与直线
垂直;②直线
与平面
平行;③平面
截正方体所得的截面面积为
;④直线
与直线
所成角的正切值为
;其中所有正确结论的编号是( )
A.②③
B.②④
C.①③
D.③④
同类题3
如图所示,正四棱锥P-ABCD中,O为底面正方形的中心,侧棱PA与底面ABCD所成的角的正切值为
.
(1)若E是PB的中点,求证OE∥平面PCD
(2)求侧面PAD与底面ABCD所成的二面角的大小
同类题4
在如图所示的几何体中,
是
的中点,
.
(1)已知
,
.求证:
;
(2)已知
分别是
和
的中点.求证:
平面
.
同类题5
如图,正方体
的棱长为2,
E
,
F
分别为
,
AC
的中点.
(1)证明:
平面
;
(2)求三棱锥
的体积.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行
证明线面垂直