刷题首页
题库
高中数学
题干
如图,在正方形
ABCD
-
A
1
B
1
C
1
D
1
中,
E
,
F
,
M
分别是棱
B
1
C
1
,
BB
1
,
C
1
D
1
的中点,是否存在过点
E
,
M
且与平面
A
1
FC
平行的平面?若存在,请作出并证明;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2017-12-07 05:08:03
答案(点此获取答案解析)
同类题1
如图,在正三棱柱
中,
的面积为
,
.点
为线段
的中点.
(1)在线段
上找一点
,使得平面
平面
,并证明;
(2)求二面角
的余弦值.
同类题2
如图所示的多面体中,
AC
⊥
BC
,四边形
ABED
是正方形,平面
ABED
⊥平面
ABC
,点
F
,
G
,
H
分别为
BD
,
EC
,
BE
的中点,求证:
(1)
BC
⊥平面
ACD
(2)平面
HGF
∥平面
AB
A.
同类题3
如图,直线
相交于点
O
,
,求证:平面
ABC
//平面
.
同类题4
在正方体
ABCD
A
1
B
1
C
1
D
1
中,
E
,
F
,
G
分别是
A
1
B
1
,
B
1
C
1
,
BB
1
的中点,给出下列四个推断:
①
FG
∥平面
AA
1
D
1
D
;
②
EF
∥平面
BC
1
D
1
;
③
FG
∥平面
BC
1
D
1
;
④平面
EFG
∥平面
BC
1
D
1
.
其中推断正确的序号是( )
A.①③
B.①④
C.②③
D.②④
同类题5
如图,正方体
中,M,N,E,F分别是棱A
1
B
1
,A
1
D
1
,B
1
C
1
,C
1
D
1
的中点,求证:平面AMN∥平面EFDB.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
面面平行的判定
证明面面平行