刷题首页
题库
高中数学
题干
如图,四边形
是正方形,
与
均是以
为直角顶点的等腰直角三角形,点
是
的中点,点
是边
上的任意一点.
(1)求证:
:
(2)在平面
中,是否总存在与平面
平行的直线?若存在,请作出图形并说明:若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-06-20 03:52:57
答案(点此获取答案解析)
同类题1
如图,在四棱锥
中,平面
平面
,底面
是一个梯形,且
,
是等边三角形,已知
.
(1)设
是
上的一点,证明:平面
平面
;
(2)求四棱锥
的体积;
(3)当
点位于线段
什么位置时,
平面
?请证明你的结论.
同类题2
如图,四棱柱
ABCD
-
中,地面
ABCD
为直角梯形,
AB
∥
CD
,
AB
⊥
BC
,平面
ABCD
⊥平面
AB
,∠
BA
=60°,
AB
=
A
=2
BC
=2
CD
=2
(1)求证:
BC
⊥
A
;
(2)求二面角
D
-
A
-
B
的余弦值;
(3)在线段
D
上是否存在点
M
,使得
CM
∥平面
DA
?若存在,求
的值;若不存在,请说明理由.
同类题3
如图,在斜三棱柱
中,
为
上的点.当
为何值时,
平面
?
同类题4
如图,四棱锥
的底面是正方形,每条侧棱的长都是底面边长的
倍,
P
为侧棱
SD
上的点.
(1)求证:
;
(2)若
平面
PAC
,则侧棱
SC
上是否存在一点
E
,使得
BE
∥平面
PAC
?若存在,求
SE
:
EC
;若不存在,试说明理由.
同类题5
四棱锥
中,底面
是边长为2的菱形,
,
为
的中点,
平面
,
与平面
所成的角的正弦值为
.
(1)在棱
上求一点
,使
平面
;
(2)求二面角
的余弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
补全线面平行的条件
证明线面垂直