刷题首页
题库
初中数学
题干
如图所示的图形中,所有四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形边长为7cm,设正方形A、B、C、D、E、F面积分别为S
A
、S
B
、S
C
、S
D
、S
E
、S
F
,则下列各式正确有( )个.
① S
A
+S
B
+S
C
+S
D
=49;② S
E
+S
F
=49;③ S
A
+S
B
+S
F
=49;④ S
C
+S
D
+S
E
=49
A.1
B.2
C.3
D.4
上一题
下一题
0.99难度 单选题 更新时间:2019-02-19 11:22:41
答案(点此获取答案解析)
同类题1
阅读下面的材料:勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为
a
,
b
,斜边为
c
,然后按图1的方法将它们摆成正方形.
由图1可以得到(
a
+
b
)
2
=4×
ab
+
c
2
整理,得
a
2
+2
ab
+
b
2
=2
ab
+
c
2
.
所以
a
2
+
b
2
=
c
2
.
如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述方法证明勾股定理.
同类题2
勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感.他惊喜的发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明.下面是小聪利用图1证明勾股定理的过程:
(1) 将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°.求证:a
2
+b
2
=c
2
.
(2) 请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.
求证:a
2
+b
2
=c
2
.
同类题3
2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形.如图所示,如果大正方形的面积是100,小正方形的面积为20,那么每个直角三角形的周长为( )
A.10+
B.10+
C.10+
D.24
同类题4
在直角三角形中,两条直角边的长度分别为a和b,斜边长度为c,则a
2
+b
2
=c
2
,即两条直角边的平方和等于斜边的平方,此结论称为勾股定理.在一张纸上画两个同样大小的直角三角形ABC和A′B′C′,并把它们拼成如图所示的形状 (点C和A′重合,且两直角三角形的斜边互相垂直).请利用拼得的图形证明勾股定理.
同类题5
如图,点
在平行四边形
的对角线
上,过点
、
分别作
、
的平行线相交于点
,连接
,
.
(1)求证:四边形
是菱形;
(2)若
,
,
,求
的长.
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
勾股定理的证明方法