刷题首页
题库
高中数学
题干
(本小题满分12分)如图,在几何体
中,
,
,
,且
,
.
(1)求证:
;
(2)求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2015-05-11 04:38:18
答案(点此获取答案解析)
同类题1
如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:
①PA∥平面MOB;
②MO∥平面PAC;
③OC⊥平面PAC;
④平面PAC⊥平面PBC.
其中正确的命题是( )
A.①②
B.②③ C. ②④
C.③④
同类题2
(本题满分14分)如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABC是边长为2的菱形,∠BAD=60°,M为PC的中点.
(Ⅰ)求证:PA//平面BDM;
(Ⅱ)在AD上确定一点
,使得面
面
,并加以证明;
(Ⅲ)求直线AC与平面ADM所成角的正弦值.
同类题3
如图所示,平面
平面
,且四边形
为矩形,四边形
为直角梯形,
,
,
,
.
(1)求证
平面
;
(2)求平面
与平面
所成锐二面角的余弦值;
(3)求直线
与平面
所成角的余弦值.
同类题4
如图所示,正三棱柱
的底面边长与侧棱长均为
,
为
中点.
(1)求证:
∥平面
;
(2)求直线
与平面
所成的角的正弦值.
同类题5
(本小题满分12分)已知如图,四边形
是直角梯形,
,
,
平面
,
,点
、
、
分别是
、
、
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系
平行公理
异面直线所成的角