刷题首页
题库
高中数学
题干
(本小题满分12分)
四棱锥S-ABCD中,侧面SAD是正三角形,底面ABCD是正方形,且平面SAD⊥平面ABCD,M、N分别是AB、SC的中点.
(Ⅰ)求证:MN∥平面SAD;
(Ⅱ)求二面角S-CM-D的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2015-03-25 06:30:18
答案(点此获取答案解析)
同类题1
如图,在多面体
中,△
是等边三角形,△
是等腰直角三角形,
,平面
平面
,
平面
,点
为
的中点,连接
.
(1) 求证:
∥平面
;
(2) 若
,求三棱锥
的体积.
同类题2
设
是两条不同的直线,
是两个不同的平面,且
,下列说法正确的是( )
A.若
,则
B.若
,则
C.若
,则
D.若
,则
同类题3
下列四个命题:
①样本相关系数r越大,线性相关关系越强;
②回归直线就是散点图中经过样本数据点最多的那条直线;
③设
是不同的直线,
是不同的平面,若
∥
,且
,
则
∥
且
∥
;
④若直线
不垂直于平面
,则直线
不可能垂直于平面
内的无数条直线。
其中正确命题的序号为( )
A.①②③
B.①③
C.①②④
D.③
同类题4
(2015秋•温州校级月考)过两条异面直线中的一条可作
个平面与另一条平行.
同类题5
(本小题满分14分)如图,平面
平面
,
,
,
(1)求证:
;
(2)求证:
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系
平行公理
异面直线所成的角