刷题首页
题库
高中数学
题干
(本题满分15分)在四棱锥
中,
平面
,
是正三角形,
与
的交点
恰好是
中点,又
,
,点
在线段
上,且
.
(Ⅰ)求证:
平面
;
(Ⅱ)求直线
与平面
所成角的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2015-06-26 08:18:04
答案(点此获取答案解析)
同类题1
(本题满分12分)
如图,在三棱柱
中,
侧面
底面
,侧棱
与底面
成
的角,
,底面
是边长为2的正三角形,其重心为
点,
是线段
上一点,且
.
求证:
;
求平面
与底面
所成锐二面角的余弦值.
同类题2
如图,在直三棱柱ABC—A
1
B
1
C
1
中,E、F分别是A
1
B、A
1
C的中点,点D在B
1
C
1
上,A
1
D⊥B
1
C.
求证:(1)EF∥平面ABC;
(2)平面A
1
FD⊥平面BB
1
C
1
C.
同类题3
如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点.在此几何体中,给出下面四个结论:
①B,E,F,C四点共面; ②直线BF与AE异面;③直线EF∥平面PBC; ④平面BCE⊥平面PAD;.⑤折线B→E→F→C是从B点出发,绕过三角形PAD面,到达点C的一条最短路径.
其中正确的有_____________.(请写出所有符合条件的序号)
同类题4
三棱柱
中,
是直二面角,
,
,且
,
为
的中点.
(Ⅰ)若
是
的中点,求证:
平面
;
(Ⅱ)求二面角
的余弦值.
同类题5
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,
G为PD中点,E点在AB上,平面PEC⊥平面PDC.
(Ⅰ)求证:AG⊥平面PCD;
(Ⅱ)求证:AG∥平面PEC;
(Ⅲ)求点G到平面PEC的距离.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系
平行公理
异面直线所成的角