刷题首页
题库
初中数学
题干
如图,在
中,
,
,
,点
是
外一点,连接
,
,且
,
.
(1)求
的长:
(2)求证:在
是直角三角形.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-31 03:08:58
答案(点此获取答案解析)
同类题1
中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为S
1
,S
2
,S
3
,若S
1
+S
2
+S
3
=18,则正方形EFGH的面积为( )
A.9
B.6
C.5
D.
同类题2
如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的长和宽分别是5cm,3cm.EB的长是______.
同类题3
如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M、M′分别是AB、A′B′的中点,若AC=4,BC=2,则线段MM′的长为____.
同类题4
如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为
.
(1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?
(2)已知
为优三角形,
,
,
,
①如图1,若
,
,
,求
的值.
②如图2,若
,求优比
的取值范围.
(3)已知
是优三角形,且
,
,求
的面积.
同类题5
已知菱形ABCD边长为6,E是BC的中点,AE、BD相交于点P.
(1)如图1,当∠ABC=90°时,求BP的长;
(2)如图2,当∠ABC角度在改变时,BP的中垂线与边BC的交点F的位置是否发生变化?如果不变,请求出BF的长;如果改变,请说明理由;
(3)当∠ABC从90°逐步减少到30°的过程中,求P点经过路线长.
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
用勾股定理解三角形