刷题首页
题库
高中数学
题干
(2015秋•石景山区期末)如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点E,F,G分别为BC,PA,PD的中点,且PA=AB=2.
(Ⅰ)证明:EF∥平面ACG;
(Ⅱ)证明:平面PBC⊥平面AEF.
上一题
下一题
0.99难度 解答题 更新时间:2016-03-08 04:57:03
答案(点此获取答案解析)
同类题1
如图,三棱柱
中,
平面
,
分别为
的中点,点
在棱
上,且
.
(1)求证:
平面
;
(2)在棱
上是否存在一个点
,使得平面
将三棱柱分割成的两部分体积之比为
,若存在,指出点
的位置;若不存在,说明理由.
同类题2
(2013•运城校级三模)如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=2BC=2,EA⊥EB.
(1)求直线EC与平面ABE所成角的正弦值;
(2)线段EA上是否存在点F,使CE∥平面FBD?若存在,求出
;若不存在,请说明理由.
同类题3
设m,n是两不同的直线,α,β是两不同的平面,则下列命题正确的是()
A.若α⊥β,α∩β=n,m⊥n,则m⊥α
B.若m⊂α,n⊂β,m∥n,则α∥β
C.若m∥α,n∥β,m⊥n,则α⊥β
D.若n⊥α,n⊥β,m⊥β,则m⊥α
同类题4
(2015秋•绍兴校级期末)连接球面上两点的线段称为球的弦,半径为4的球的两条弦AB、CD的长度分别为2
和4
,M、N分别是AB、CD的中点,两条弦的两端都在球面上运动,有下面四个命题:
①弦AB、CD可能相交于点M;
②弦AB、CD可能相交于点N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正确命题的序号为
.
同类题5
(2015秋•温州校级月考)过两条异面直线中的一条可作
个平面与另一条平行.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系
平行公理
证明异面直线垂直