刷题首页
题库
初中数学
题干
(1)如图1,△ABC中,作∠ABC、∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于E、
A.
①求证:OE=B
B.
②若△ABC 的周长是25,BC=9,试求出△AEF的周长.
(2)如图2,若∠ABC的平分线与∠ACB外角∠ACD的平分线相交于点P,连接AP,若∠BAC=80°,∠PAC的度数?
上一题
下一题
0.99难度 解答题 更新时间:2019-11-26 09:10:29
答案(点此获取答案解析)
同类题1
如图,△
ABC
中,
AD
⊥
BC
交
BC
于
D
,
AE
平分∠
BAC
交
BC
于
E
,
F
为
BC
的延长线上一点,
FG
⊥
AE
交
AD
的延长线于
G
,
AC
的延长线交
FG
于
H
,连接
BG
,下列结论:①∠
DAE
=∠
F
;②∠
DAE
=
(∠
ABD
﹣∠
ACE
);③
S
△
AEB
:
S
△
AEC
=
AB
:
AC
;④∠
AGH
=∠
BAE
+∠
ACB
,其中正确的结论有( )个.
A.1
B.2
C.3
D.4
同类题2
如图,在四边形
中,
,
平分
,则
____.
同类题3
如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于F,交AC于E,过点O作OD⊥BC于D,下列三个结论:①∠AOB=90°+
;②当∠C=90°时,E,F分别是AC,BC的中点;③若OD=a,CE+CF=2b,则S
△
CEF
=ab,其中正确的是( )
A.①②③
B.①③
C.①②
D.①
同类题4
如图,
AB
∥
CD
,
BE
平分∠
ABC
,
CE
平分∠
BCD
,若
E
在
AD
上.
求证:(1)
BE
⊥
CE
;
(2)
BC
=
AB
+
CD
.
同类题5
问题研究:如图1,在
中,点
是
和
的角平分线的交点,则
与
有怎样的数量关系?
解:在
中,
,
即
.
在
中,
,
∴
,
∴
,
∴
,
.
问题探究:根据上面的方法和结论,我们继续探究.
(1)如图2,在四边形
中,
是
和
的角平分线所在直线构成的钝角,则
与
,
有怎样的数量关系?请说明理由;
(2)如图3,在四边形
中,
是
的平分线及外角
的平分线所在直线构成的锐角,且
,则
与
,
有怎样的数量关系?请说明理由;
(3)如图4,在四边形
中,
是
的平分线及外角
的平分线所在直线构成的锐角,且
,则
与
,
有怎样的数量关系?(画出图形,直接写出结论,不需说明理由)
相关知识点
图形的性质
几何图形初步
角
角平分线
与角平分线有关的证明
两直线平行内错角相等