刷题首页
题库
初中数学
题干
如图,BE、CF分别是钝角△ABC(∠A>90°)的高,在BE上截取BP=AC,在CF的延长线截取CQ=AB,连结AP、AQ,请推测AP与AQ的数量和位置关系并加以证明。
上一题
下一题
0.99难度 解答题 更新时间:2019-10-30 03:49:34
答案(点此获取答案解析)
同类题1
如图,点
、
、
、
在同一直线上,
,
,且
.求证:
.
同类题2
△ABC是等边三角形,点E、F分别为射线AC、射线CB上两点,CE=BF,直线EB、AF交于点D.
(1)当E、F在边AC、BC上时如图,求证:△ABF≌△BC
A.
(2)当E在AC延长线上时,如图,AC=10,S
△
ABC
=25
,EG⊥BC于G,EH⊥AB于H,HE=8
,EG=
.
(3)E、F分别在AC、CB延长线上时,如图,BE上有一点P,CP=BD,∠CPB是锐角,求证:BP=AD.
同类题3
在
中,
,
.
(1)如图①,
是过点
的一条直线,且
在
的同侧,
于
,
于
.写出
间的数量关系,并写明理由;
(2)如图②,
是过点
的一条直线,且
在
的两侧,
于
,
于
.写出
间的数量关系,并写明理由.
图① 图②
同类题4
在
中,
,
,
是
的两条角平分线,且
,
交于点
.
(1)如图1,用等式表示
,
,
这三条线段之间的数量关系,并证明你的结论;
小东通过观察、实验,提出猜想:
.他发现先在
上截取
,使
,连接
,再利用三角形全等的判定和性质证明
即可.
①下面是小东证明该猜想的部分思路,请补充完整:
ⅰ)在
上截取
,使
,连接
,则可以证明
与
全等,判定它们全等的依据是
;
ⅱ)由
,
,
是
的两条角平分线,可以得出
°;
②请直接利用ⅰ),ⅱ)已得到的结论,完成证明猜想
的过程.
(2)如图2,若
,求证:
.
同类题5
如图,在△ABC中,AO平分∠BAC,点D为BC边中点,过点D作OD⊥BC,与AO相交于点O,小马同学根据以上条件进行了探究,下面是他探究的推理过程,请你判断他的推理是否正确,如有错误,请你用笔圈出来,并说明错误原因.
解:点D为BC边中点
∴BD=CD
∵OD⊥BC
∴∠BDO=∠CDO
在△BDO和△CDO中
∵
∴△BDO≌△CDO
∴BO=CO
∵AO平分∠BAC
∴∠BAO=∠CAO
在△BAO和△CAO中,
∵
∴△BAO≌△CAO
∴AB=AC
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定