刷题首页
题库
高中数学
题干
如图,在单位正方体
中,点
P
在线段
上运动,给出以下四个命题:
异面直线
与
间的距离为定值;
三棱锥
的体积为定值;
异面直线
与直线
所成的角为定值;
二面角
的大小为定值.
其中真命题有( )
A.1个
B.2个
C.3个
D.4个
上一题
下一题
0.99难度 单选题 更新时间:2020-02-12 05:33:01
答案(点此获取答案解析)
同类题1
如图,在四棱锥
中,底面
是正方形,
面
,点
为线段
上异于
的点,连接
,并延长
和
交于点
,连接
.
(1)求证:面
面
;
(2)若三棱锥
的体积为2,求
的长度.
同类题2
已知矩形
的长
,宽
,将其沿对角线
折起,得到四面体
,
如图所示,给出下列结论:
①四面体
体积的最大值为
;
②四面体
外接球的表面积恒为定值;
③若
分别为棱
的中点,则恒有
且
;
④当二面角
为直二面角时,直线
所成角的余弦值为
;
⑤当二面角
的大小为
时,棱
的长为
.
其中正确的结论有____________________(请写出所有正确结论的序号)
同类题3
如图所示,一个空间几何体的主视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为________.
同类题4
已知某几何体的三视图如图所示,则该几何体的体积为( )
A.
B.
C.
D.
同类题5
如图,平面ABCD⊥平面CDEF,且四边形ABCD是梯形,四边形CDEF是矩形,∠BAD=∠CDA=90°,AB=AD=DE=
CD,M是线段DE上的动点.
(1)试确定点M的位置,使BE∥平面MAC,并说明理由;
(2)在(1)的条件下,四面体E-MAC的体积为3,求线段AB的长.
相关知识点
空间向量与立体几何
空间几何体
空间几何体的表面积与体积
柱、锥、台的体积
锥体体积的有关计算
求异面直线的距离