刷题首页
题库
高中数学
题干
正三棱柱
的所有棱长都相等,
是棱
的中点,则异面直线
与
所成角的余弦值为__________.
上一题
下一题
0.99难度 填空题 更新时间:2020-02-22 05:34:54
答案(点此获取答案解析)
同类题1
如图,在四棱锥P-ABCD中,底面ABCD是矩形,
,BC=1,
,PD=CD=2.
(I)求异面直线PA与BC所成角的正切值;
(II)证明平面PDC⊥平面ABCD;
(III)求直线PB与平面ABCD所成角的正弦值.
(考点定位)本小题主要考查异面直线所成的角、平面与平面垂直、直线与平面所成的角等基础知识.,考查空间想象能力、运算求解能力和推理论证能力.
同类题2
如图两个同心球,球心均为点
,其中大球与小球的表面积之比为3:1,线段
与
是夹在两个球体之间的内弦,其中
两点在小球上,
两点在大球上,两内弦均不穿过小球内部.当四面体
的体积达到最大值时,此时异面直线
与
的夹角为
,则
( )
A.
B.
C.
D.
同类题3
正方体
ABCD
-
A
1
B
1
C
1
D
1
中,
E
是棱
AB
上的动点,则直线
A
1
D
与直线
C
1
E
所成的角等于 ( )
A.60°
B.90°
C.30°
D.随点
E
的位置而变化
同类题4
有一种多面体的饰品,其表面右6个正方形和8各正三角形组成(如图),AB与CD所成的角的大小是_____________
同类题5
在正方体
ABCD
﹣
A
1
B
1
C
1
D
1
中,
DB
与
A
1
B
夹角是( )
A.30°
B.45°
C.60°
D.75°
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系
异面直线所成的角
求异面直线所成的角