刷题首页
题库
高中数学
题干
已知四棱柱
,底面
是正方形,
平面
,
,
是侧棱
上的一点.
(1)求证:不论
在侧棱
上何位置,总有
;
(2)若
,求平面
与平面
所成二面角的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-22 01:12:08
答案(点此获取答案解析)
同类题1
如图,在三棱柱
中,侧面
为菱形,
,
,
.
(Ⅰ)求证:
;
(Ⅱ)若
,求二面角
的余弦值.
同类题2
如图所示,已知
所在的平面,
是
的直径,
,
是
上一点,且
,
与
所在的平面成
角,
是
的中点,
是
的中点;
(1)求证:
平面
;
(2)求三棱锥
-
的体积.
同类题3
如图,在直三棱柱
.
(1)
分别为
的中点
求证:
平面
;
(2)求证:
.
同类题4
如图,三棱柱
的侧棱
垂直于底面
,且
,
,
,
,
是棱
的中点.
(1)证明:
;
(2)求二面角
的余弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的性质
线面垂直证明线线垂直