刷题首页
题库
初中数学
题干
如图,在△
ABC
中,
AB
=
BC
,∠
B
=90°,点
D
为直线
BC
上一个动点(不与
B
,
C
重合),连结
AD
.将线段
AD
绕点
D
按顺吋针方向旋转90°得到线段
DE
,连结
EC
.
(1)如图1,点
D
在线段
BC
上,依题意画图得到图2.
①求证:∠
BAD
=∠
EDC
;
②方方同学通过观察、测量得出结论:在点
D
运动的过程中,总有∠
DCE
=135°.方方的主要思路有以下几个:
思路一:在
AB
上取一点
F
使得
BF
=
BD
,要证∠
DCE
=135°,只需证△
ADF
≌△
DEC
.
思路二:以点
D
为圆心,
DC
为半径画弧交
AC
于点
F
,要证∠
DCE
=135°,只需证△
AFD
≌△
ECD
.
思路三:过点
E
作
BC
所在直线的垂线段
EF
,要证∠
DCE
=135°,只需证
EF
=
CF
.
……
请你参考井选择其中一个思路,证明∠
DCE
=135°;
(2)如果点
D
在线段
CB
的延长线上运动,利用图3画图分析,∠
DCE
的度数还是确定的值吗?如果是,请写出∠
DCE
的度数并说明理由;如果不是,也请说明你的理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-14 09:11:29
答案(点此获取答案解析)
同类题1
如图1,已知
中,点
在
边上,
交边
于点
,且
平分
.
(1)求证:
;
(2)如图2,在
边上取点
,使
,若
,
,求
的长。
同类题2
如图,在△
ABC
中,
AD
、
AE
分别为△
ABC
的中线和角平分线.过点
C
作
CH
⊥
AE
于点
H
,并延长交
AB
于点
F
,连接
DH
,求证:
DH
=
BF
.
同类题3
如图,在等腰
中,
,在
中,
,
与
交于点
。
(1)如图1,若
,求
的长;
(2)如图2,
为
延长线上一点,连接
,若
,求证:
。
同类题4
(1)如图1,点
是等腰三角形
的底边
上的一个动点,过点
作
的垂线,交直线
于点
,交
的延长线于点
,请观察
与
,它们有何数量关系?并证明你的猜想.
(2)如果点
沿着底边
所在的直线,按由
向
的方向运动到
的延长线上时,(1)中所得的结论还成立吗?请你在图2中完成图形,写出结论.并证明你的猜想.
同类题5
如图,点
是
上任意一点,
,
.下列结论不一定成立的是( )
A.
B.
C.
D.
垂直平分
相关知识点
图形的性质
三角形
等腰三角形
等腰三角形