刷题首页
题库
高中数学
题干
某种设备购买时费用为10万元,每年的设备管理费共计9千元,这种设备的维修费各年为:第一年2千元,第二年4千元,第三年6千元,而且以后以每年2千元的增量逐年递增.问这种设备最多使用多少年报废最合算(即使用多少年的年平均费用最少)?
上一题
下一题
0.99难度 解答题 更新时间:2017-12-12 04:08:24
答案(点此获取答案解析)
同类题1
已知数列1、1、2、1、2、4、1、2、4、8、1、2、4、8、16、…,其中第一项是
,接下来的两项是
、
,再接下来的三项是
、
、
,以此类推,若
且该数列的前
项和为2的整数幂,则
的最小值为( )
A.440
B.330
C.220
D.110
同类题2
已知各项均为正数的等比数列
满足
.
(1)求数列
的通项公式;
(2)设
是首项为1,公差为2的等差数列,求数列
的前
n
项和
.
同类题3
若正项数列
满足:
,则称此数列为“比差等数列”.
(1)试写出一个“比差等数列”的前
项;
(2)设数列
是一个“比差等数列”,问
是否存在最小值,如存在,求出最小值;如不存在,请说明理由;
(3)已知数列
是一个“比差等数列”,
为其前
项的和,试证明:
.
同类题4
定义:从数列
中抽取
项按其在
中的次序排列形成一个新数列
,则称
为
的子数列;若
成等差(或等比),则称
为
的等差(或等比)子数列.
(1)记数列
的前
项和为
,已知
.
①求数列
的通项公式;
②数列
是否存在等差子数列,若存在,求出等差子数列;若不存在,请说明理由.
(2)已知数列
的通项公式为
,证明:
存在等比子数列.
同类题5
设满足以下两个条件得有穷数列
为
阶“期待数列”:
①
,②
.
(1)若等比数列
为
阶“期待数列”,求公比
;
(2)若一个等差数列
既为
阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记
阶“期待数列”
的前
项和为
.
(
)求证:
;
(
)若存在
,使
,试问数列
是否为
阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.
相关知识点
数列