刷题首页
题库
初中数学
题干
已知,如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,FH平分∠EF
A.求证:EG∥FH.
请完成以下证明过程:
证明:∵AB∥CD(已知)
∴∠AEF=∠EFD(
__________________
)
∵EG平分∠AEF,FH平分∠EFD(
__________
)
∴∠
___
=
∠AEF,∠
___
=
∠EFD(
____________
)
∴∠
_____
=∠
______
(等量代换)
∴EG∥FH(
__________________
).
上一题
下一题
0.99难度 解答题 更新时间:2020-02-12 05:27:08
答案(点此获取答案解析)
同类题1
(1)如图①,小明同学作出
两条角平分线
,
得到交点
,就指出若连接
,则
平分
,你觉得有道理吗?为什么?
(2)如图②,
中,
,
,
,
的角平分线
上有一点
,设点
到边
的距离为
.(
为正实数)
小季、小何同学经过探究,有以下发现:
小季发现:
的最大值为
.
小何发现:当
时,连接
,则
平分
.
请分别判断小季、小何的发现是否正确?并说明理由.
同类题2
如图1,
,点
为
、
之间一点,连接
、
,
平分
交
于点
,
平分
交
于点
,
、
交于点
,
(1)求证:
;
(2)如图2连接
并延长至点
若
,请直接写出图中所有与
相等的角.
同类题3
如图,
中,点
在
的延长线上,
平分
,
.
求证:
.
同类题4
如图,已知
与
互为补角,且
,
(1)求证:
;
(2)若
,
平分
,求证:
.
同类题5
某八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.
(1)如图1,△ABC的两内角∠ABC与∠ACB的平分线交于点E,求证:∠BEC=90°+
∠A;
(2)如图2,△ABC的内角∠ABC的平分线与△ABC的外角∠ACM的平分线交于点E,请写出∠E与∠A的数量关系,并证明.
(3)如图3,△ABC的两外角∠DBC与∠BCF的平分线交于点E,请你直接写出∠E与∠A的数量关系,不需证明.
相关知识点
图形的性质
几何图形初步
角
角平分线
与角平分线有关的证明
根据平行线的性质探究角的关系