刷题首页
题库
高中数学
题干
观察下列三角形数表,数表(1)是杨辉三角数表,数表(2)是与数表(1)有相同构成规律(除每行首末两端的数外)的一个数表.
对于数表(2),设第
行第二个数为
(
)(如
,
,
).
(Ⅰ)归纳出
与
(
,
)的递推公式(不用证明),并由归纳的递推公式求出
的通项公式
;
(Ⅱ)数列
满足:
,求证:
.
上一题
下一题
0.99难度 解答题 更新时间:2017-05-15 03:55:59
答案(点此获取答案解析)
同类题1
已知等差数列
的首项为
,公差为
,等比数列
的首项为
,公比为
,其中
,且
.
(1)求证:
,并由
推导
的值;
(2)若数列
共有
项,前
项的和为
,其后的
项的和为
,再其后的
项的和为
,求
的比值.
(3)若数列
的前
项,前
项、前
项的和分别为
,试用含字母
的式子来表示
(即
,且不含字母
)
同类题2
已知数列
中
,前
项和为
,若对任意的
,均有
(
是常数,且
)成立,则称数列
为“
数列”.
(1)若数列
为“
数列”,求数列
的前
项和
;
(2)若数列
为“
数列”,且
为整数,试问:是否存在数列
,使得
对一切
,
恒成立?如果存在,求出这样数列
的
的所有可能值,如果不存在,请说明理由;
(3)若数列
为“
数列”,且
,证明:
.
同类题3
数列
的前
项和
满足
,且
成等差数列.
(1)求数列
的通项公式;
(2)设
,求数列
的前
项和
.
同类题4
已知数列
满足
(
为常数,
)
(1)当
时,求
;
(2)当
时,求
的值;
(3)问:使
恒成立的常数
是否存在?并证明你的结论.
同类题5
已知二次函数
的图象的顶点坐标为
,且过坐标原点
.数列
的前
项和为
,点
在二次函数
的图象上.
(Ⅰ)求数列
的通项公式;
(Ⅱ)设
,数列
的前
项和为
,若
对
恒成立,求实数
的取值范围;
(Ⅲ)在数列
中是否存在这样一些项:
,这些项都能够构成以
为首项,
为公比的等比数列
?若存在,写出
关于
的表达式;若不存在,说明理由.
相关知识点
数列
裂项相消法求和