刷题首页
题库
高中数学
题干
已知无穷数列
的各项都是正数,其前
项和为
,且满足:
,
,其中
,常数
.
(1)求证:
是一个定值;
(2)若数列
是一个周期数列(存在正整数
,使得对任意
,都有
成立,则称
为周期数列,
为它的一个周期),求该数列的最小周期;
(3)若数列
是各项均为有理数的等差数列,
(
),问:数列
中的所有项是否都是数列
中的项?若是,请说明理由;若不是,请举出反例.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-17 06:09:08
答案(点此获取答案解析)
同类题1
数列
满足
对任意的
恒成立,
为其前
n
项的和,且
,
.
(1)求数列
的通项
;
(2)数列
满足
,其中
.
①证明:数列
为等比数列;
②求集合
同类题2
已知数列
满足
,且
(1)求
;
(2)求数列
的通项公式;
(3)
,求
的前
项和
.
同类题3
已知数列{
a
n
}中,
a
1
=1,
a
2
=
a
,且
a
n
+1
=
k
(
a
n
+
a
n
+2
)对任意正整数
n
都成立,数列{
a
n
}的前
n
项和为
S
n
.
(1)若
,且
S
2019
=2019,求
a
;
(2)是否存在实数
k
,使数列{
a
n
}是公比不为1的等比数列,且任意相邻三项
a
m
,
a
m
+1
,
a
m
+2
按某顺序排列后成等差数列,若存在,求出所有
k
的值;若不存在,请说明理由;
(3)若
,求
S
n
.
同类题4
已知数列
满足:
,且
.
(1)求证:数列
为等差数列;
(2)求数列
的通项公式;
(3)求下表中前n行所有数的和
.
……………………………
同类题5
定义:若数列
中存在
,其中
,
,
,
,
及
均为正整数,且
(
),则称数列
为“
数列”.
(1)若数列
的前
项和
,求证:
是“
数列”;
(2)若
是首项为1,公比为
的等比数列,判断
是否是“
数列”,说明理由;
(3)若
是公差为
(
)的等差数列且
(
),
,求证:数列
是“
数列”.
相关知识点
数列
由递推数列研究数列的有关性质
由递推关系证明数列是等差数列