刷题首页
题库
高中数学
题干
设函数
,则导数
的取值范围是
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2015-10-08 04:17:42
答案(点此获取答案解析)
同类题1
养正中学新校区内有一块以
O
为圆心,
R
(单位:米)为半径的半圆形荒地(如图),校总务处计划对其开发利用,其中弓形
BCD
区域(阴影部分)用于种植观赏植物,△
OBD
区域用于种植花卉出售,其余区域用于种植草皮出售。已知种植观赏植物的成本是每平方米20元,种植花卉的利润是每平方米80元,种植草皮的利润是每平方米30元。
(1)设
(单位:弧度),用
表示弓形BCD的面积
(2)如果该校总务处邀请你规划这块土地。如何设计
的大小才能使总利润最大?并求出该最大值
同类题2
若实数a,b,c,d满足︱b+a
2
-3l
n
a︱+(c-d+2)
2
=0,则(a-c)
2
+(b-d)
2
的最小值为
.
同类题3
某企业有A、B两种型号的家电产品参加家电下乡活动,若企业投放A、B两种型号家电产品的价值分别为
、
万元,则农民购买家电产品获得的补贴分别为
万元、
万元(
且为常数),已知该企业投放总价值为100万元的A、B两种型号的家电产品,且A、B两种型号的投放金额都不低于10万元.
(1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;
(2)问A、B两种型号的家电产品各投放多少万元时,农民得到的总补贴最多?
同类题4
函数
的导数
.
同类题5
将一个半径为3dm,圆心角为
的扇形铁皮焊接成一个容积为V(dm
3
)的圆锥形无盖容器(忽略损耗).
(1)求V关于
的函数关系式
(2)当
为何值时,V取得最大值
(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5dm的球?请说明理由.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题