刷题首页
题库
高中数学
题干
某渔场有一边长为20m的正三角形湖面
ABC
(如图所示),计划筑一条笔直的堤坝
DE
将水面分成
面积相等
的两部分,以便进行两类水产品养殖试验(
D
在
AB
上,
E
在
AC
上).
(1)为了节约开支,堤坝应尽可能短,请问该如何设计?堤坝最短为多少?
(2)将
DE
设计为景观路线,堤坝应尽可能长,请问又该如何设计?
上一题
下一题
0.99难度 解答题 更新时间:2017-07-21 11:49:51
答案(点此获取答案解析)
同类题1
如图为河岸一段的示意图,一游泳者站在河岸的
点处,欲前往河对岸的
点处,若河宽
为100
,
相距100
,他希望尽快到达
,准备从
步行到
(
为河岸
上的点),再从
游到
已知此人步行速度为
,游泳速度为0.5
.
(I)设
,试将此人按上述路线从
到
所需时间
表示为
的函数;并求自变量
取值范围;
(II)当
为何值时,此人从
经
游到
所需时间
最小,其最小值是多少?
同类题2
如图,一条小河岸边有相距
的
两个村庄(村庄视为岸边上
两点),在小河另一侧有一集镇
(集镇视为点
),
到岸边的距离
为
,河宽
为
,通过测量可知,
与
的正切值之比为
.当地政府为方便村民出行,拟在小河上建一座桥
(
分别为两岸上的点,且
垂直河岸,
在
的左侧),建桥要求:两村所有人到集镇所走距离之和最短,已知
两村的人口数分别是
人、
人,假设一年中每人去集镇的次数均为
次.设
.(小河河岸视为两条平行直线)
(1)记
为一年中两村所有人到集镇所走距离之和,试用
表示
;
(2)试确定
的余弦值,使得
最小,从而符合建桥要求.
同类题3
某地有三家工厂,分别位于矩形
ABCD
的顶点
A
,
B
,及
CD
的中点
P
处,已知
km,
,为了处理三家工厂的污水,现要在矩形
ABCD
的区域上(含边界),且
A
,
B
与等距离的一点
O
处建造一个污水处理厂,并铺设排污管道
AO
,
BO
,
OP
,设排污管道的总长为
y
km。
(I)按下列要求写出函数关系式:
①设
,将
表示成
的函数关系式;
②设
,将
表示成
的函数关系式。
(Ⅱ)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短。
同类题4
某单位用3240万元购得一块空地,计划在该地块上建造一栋至少15层、每层3000平方米的楼房.经测算,如果将楼房建为x(x≥15)层,则每平方米的平均建筑费用为840+kx(单位:元).已知楼房建为15层时,每平方米的平均建筑费用为1245元.
(1)求k的值.
(2)当楼房建为多少层时,楼房每平方米的平均综合费用最少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=
)
同类题5
某种圆柱形的如罐的容积为
个立方单位,当它的底面半径和高的比值为______.时,可使得所用材料最省.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
用料最省问题