刷题首页
题库
高中数学
题干
设
,已知定义在R上的函数
在区间
内有一个零点
,
为
的导函数.
(Ⅰ)求
的单调区间;
(Ⅱ)设
,函数
,求证:
;
(Ⅲ)求证:存在大于0的常数
,使得对于任意的正整数
,且
满足
.
上一题
下一题
0.99难度 解答题 更新时间:2017-08-08 09:57:10
答案(点此获取答案解析)
同类题1
已知函数
,
为自然对数的底数.
(1)若
,
,判断函数
在
上的单调性;
(2)令
,
,若
,求证:方程
无实根.
同类题2
已知
是定义域,值域都为
的函数,满足
,则下列不等式正确的是( )
A.
B.
C.
D.
同类题3
设函数
,则使得
成立的
的取值范围是
A.
B.
C.
D.
同类题4
设
,
分别是定义在
上的奇函数和偶函数,当
时,
,且
,则不等式
的解集是( )
A.
B.
C.
D.
同类题5
已知函数
,下列命题正确的有_______.(写出所有正确命题的编号)
①
是奇函数;
②
在
上是单调递增函数;
③方程
有且仅有1个实数根;
④如果对任意
,都有
,那么
的最大值为2.
相关知识点
函数与导数
导数及其应用
导数在研究函数中的作用
利用导数研究函数的单调性
用导数判断或证明已知函数的单调性
利用导数求函数的单调区间