刷题宝
  • 刷题首页
题库 高中数学

题干

已知函数.
(1)讨论的单调性;
(2)当时,证明:对恒成立.
上一题 下一题 0.99难度 解答题 更新时间:2018-05-22 11:06:10

答案(点此获取答案解析)

同类题1

设函数,其中,且是公差为的等差数列.
(I)若 求曲线在点处的切线方程;
(II)若,求的极值;
(III)若曲线与直线有三个互异的公共点,求d的取值范围.

同类题2

(1)讨论函数f (x)=x+-2的单调性;

(2)证明:函数g (x)=-lnx有极小值点x0,且g (x0)∈(0,).

同类题3

已知函数有两个极值点,则实数的取值范围是()
A.B.C.D.

同类题4

已知.
(1)当时,求函数在点,处的切线方程;
(2)若函数在区间上有极小值点,且总存在实数,使函数的极小值与互为相反数,求实数的取值范围.

同类题5

已知函数,,.
(1)设.①若,则,满足什么条件时,曲线与在x=0处总有相同的切线?②当a=1时,求函数单调区间;
(2)若集合为空集,求ab的最大值.
相关知识点
  • 函数与导数
  • 导数及其应用
  • 导数在研究函数中的作用
  • 利用导数研究函数的最值
  • 函数单调性、极值与最值的综合应用
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)