刷题宝
  • 刷题首页
题库 高中数学

题干


设为实数,函数.
(1)求的单调区间与极值;
(2)求证:当且时,.
上一题 下一题 0.99难度 解答题 更新时间:2019-02-06 09:37:31

答案(点此获取答案解析)

同类题1

函数的单调减区间是 (  )
A.B.  
C.D.和

同类题2

已知函数f(x)=和图象过坐标原点O,且在点(-1,f(-1))处的切线的斜率是-5.
(1)求实数b,c的值;
(2)求函数f(x)在区间[-1,1]上的最小值;
(3)若函数y=f(x)图象上存在两点P,Q,使得对任意给定的正实数a都满足△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上,求点P的横坐标的取值范围.

同类题3

设f(x)=x3-3ax2+2bx在x=1处有极小值-1.
(1)求a、b的值
(2)求出f(x)的单调区间;
(3)求f(x)的极大值.

同类题4

定义在上的可导函数的导函数的图象如图所示,以下结论正确的是(   )
A.-3是的一个极小值点;
B.-2和-1都是的极大值点;
C.的单调递增区间是;
D.的单调递减区间是.

同类题5

已知函数(是常数)在处的切线方程为,且.
(1)求常数的值;
(2)若函数()在区间内不是单调函数,求实数的取值范围.
相关知识点
  • 函数与导数
  • 导数及其应用
  • 导数在研究函数中的作用
  • 利用导数研究函数的单调性
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)