刷题宝
  • 刷题首页
题库 高中数学

题干

已知函数.
(1)若在上单调递减,求的取值范围;
(2)若在处取得极值,判断当时,存在几条切线与直线平行,请说明理由;
(3)若有两个极值点,求证:.
上一题 下一题 0.99难度 解答题 更新时间:2019-05-06 05:54:28

答案(点此获取答案解析)

同类题1

已知函数f(x)=2ex+3x2-2x+1+b,x∈R的图象在x=0处的切线方程为y=ax+2.
(1)求函数f(x)的单调区间与极值;
(2)若存在实数x,使得f(x)-2x2-3x-2-2k≤0成立,求整数k的最小值.

同类题2

已知函数的图象在点处的切线方程为.
求a、b的值;
求函数的单调区间;
求在的最值.

同类题3

已知函数,且函数的图象在点处的切线斜率为.
(1)求的值,并求函数的最值;
(2)当时,求证:.

同类题4

已知函数,曲线在点处切线方程为.
(1)求的值;
(2)讨论的单调性,并求的极大值.

同类题5

设函数,.
(1)若,,求函数的单调区间;
(2)若曲线在点处的切线与直线平行.
①求,的值;
②求实数的取值范围,使得对恒成立.
相关知识点
  • 函数与导数
  • 导数及其应用
  • 导数的概念和几何意义
  • 导数的几何意义
  • 已知切线(斜率)求参数
  • 由函数在区间上的单调性求参数
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)