刷题首页
题库
高中数学
题干
(本小题满分12分)某地有三个村庄,分别位于等腰直角三角形
ABC
的三个顶点处,已知
AB
=
AC
=6km,现计划在
BC
边的高
AO
上一点
P
处建造一个变电站.记
P
到三个村庄的距离之和为
y
.
(1)设
,求
y
关于
的函数关系式;
(2)变电站建于何处时,它到三个小区的距离之和最小?
上一题
下一题
0.99难度 解答题 更新时间:2010-10-09 03:13:32
答案(点此获取答案解析)
同类题1
水葫芦原产于巴西,
年作为观赏植物引入中国. 现在南方一些水域水葫芦已泛滥成灾严重影响航道安全和水生动物生长. 某科研团队在某水域放入一定量水葫芦进行研究,发现其蔓延速度越来越快,经过
个月其覆盖面积为
,经过
个月其覆盖面积为
. 现水葫芦覆盖面积
(单位
)与经过时间
个月的关系有两个函数模型
与
可供选择.
(参考数据:
)
(Ⅰ)试判断哪个函数模型更合适,并求出该模型的解析式;
(Ⅱ)求原先投放的水葫芦的面积并求约经过几个月该水域中水葫芦面积是当初投放的
倍.
同类题2
定义在
上的函数
满足:①当
时,
;②
.设关于
的函数
的零点从小到大依次为
.若
,则
________
;若
,则
________________.
同类题3
如图,
,
,
三地有直道相通,
千米,
千米,
千米.现甲、乙两警员同时从
地出发匀速前往
地,经过
小时,他们之间的距离为
(单位:千米).甲的路线是
,速度为
千米/小时,乙的路线是
,速度为
千米/小时.乙到达
地后原地等待.设
时乙到达
地.
(1)求
与
的值;
(2)已知警员的对讲机的有效通话距离是
千米.当
时,求
的表达式,并判断
在
上得最大值是否超过
?说明理由.
同类题4
一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形
(如图所示,其中
O
为圆心,
在半圆上),设
,木梁的体积为
V
(单位:m
3
),表面积为
S
(单位:m
2
).
(1)求
V
关于
θ
的函数表达式;
(2)求
的值,使体积
V
最大;
(3)问当木梁的体积
V
最大时,其表面积
S
是否也最大?请说明理由.
同类题5
已知
,则
( )
A.
B.
C.
D.
相关知识点
函数与导数
函数的应用
函数模型及其应用