刷题首页
题库
高中数学
题干
某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒
个单位的去污剂,空气中释放的浓度
(单位:毫克/立方米)随着时间
单位:天)变化的函数关系式,近似为
,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和. 由实验知,当空气中去污剂的浓度不低于
(毫克/立方米)时,它才能起到去污作用.
(1)若一次喷洒
个单位的去污剂,则去污时间可达几天?
(2)若第一次喷洒
个单位的去污剂,
天后再唢洒
个单位的去污剂,要使接来的
天中能够持续有效去污,试求
的最小值(精确到
,参考数据:
取
).
上一题
下一题
0.99难度 解答题 更新时间:2016-09-23 03:35:27
答案(点此获取答案解析)
同类题1
某科研小组研究发现:一棵水果树的产量
(单位:百千克)与肥料费用(单位:百元)满足如下关系:
.此外,还需要投入其它成本(如施肥的人工费等)
百元.已知这种水果的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水果树获得的利润为
(单位:百元).
(1)求
的函数关系式;
当投入的肥料费用为多少时,该水果树获得的利润最大?最大利润是多少?
同类题2
某单位欲用木料制作如下图所示的框架,框架的下部是边长分别为
(单位为:
)的矩形,上部是等腰直角三角形,要求框架围成的总面积为
,问:
分别是多少(精确到
)时用料最省?
同类题3
某固定在墙上的广告金属支架如图所示,根据要求,
长要超过4米(不含4米),
为
的中点,
到
的距离比
的长小1米,
(1)若
,将支架的总长度表示为
的函数,并写出函数的定义域.(注:支架的总长度为图中线段
、
和
的长度之和)
(2)如何设计
、
的长,可使支架总长度最短.
同类题4
已知函数
.
(1)求证:
;
(2)解不等式
同类题5
已知定义域为
的函数
,满足
;当
时,
单调递增.如果
,对于
的值,下列判断正确的是( )
A.恒小于0
B.恒大于0
C.可能为0
D.可正可负
相关知识点
函数与导数
函数的应用
函数模型及其应用